Step of Proof: can-apply-compose-iff
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
can-apply-compose-iff
:
A
,
B
,
C
:Type,
g
:(
A
(
B
+ Top)),
f
:(
B
(
C
+ Top)),
x
:
A
.
(
can-apply(
f
o
g
;
x
))
((
can-apply(
g
;
x
)) & (
can-apply(
f
;do-apply(
g
;
x
))))
latex
by ((MaAuto
)
CollapseTHEN (AllHyps (\h. ((FLemma `can-apply-compose` [h])
CollapseTHEN (Auto
))
Co
)))
latex
Co
1
:
Co1:
1.
A
: Type
Co1:
2.
B
: Type
Co1:
3.
C
: Type
Co1:
4.
g
:
A
(
B
+ Top)
Co1:
5.
f
:
B
(
C
+ Top)
Co1:
6.
x
:
A
Co1:
7.
can-apply(
g
;
x
)
Co1:
8.
can-apply(
f
;do-apply(
g
;
x
))
Co1:
can-apply(
f
o
g
;
x
)
Co
.
Definitions
Top
,
P
Q
,
P
Q
,
x
:
A
B
(
x
)
,
A
c
B
,
,
b
,
if
b
then
t
else
f
fi
,
True
,
case
b
of inl(
x
) =>
s
(
x
) | inr(
y
) =>
t
(
y
)
,
f
(
a
)
,
do-apply(
f
;
x
)
,
tt
,
ff
,
left
+
right
,
Unit
,
,
x
:
A
B
(
x
)
,
Type
,
t
T
,
x
:
A
.
B
(
x
)
,
P
Q
,
{
T
}
,
P
&
Q
Lemmas
do-apply
wf
,
btrue
wf
,
bfalse
wf
,
can-apply-compose
origin